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Abstract

There is a need to increase the temperature capability of superalloy turbine disks

to allow higher operating temperatures in advanced aircraft engines. When modifying

processing and chemistry of disk alloys to achieve this capability, it is important to
preserve the ability to use rapid cooling during supersolvus heat treatments to achieve

coarse grain, fine gamma prime microstructures. An important step in this effort is an

understanding of the key variables controlling the cracking tendencies of nickel-base disk

alloys during quenching from supersolvus heat treatments. The objective of this study

was to investigate the quench cracking tendencies of several advanced disk superalloys

during simulated heat treatments. Miniature disk specimens were rapidly quenched after

solution heat treatments. The responses and failure modes were compared and related to

the quench cracking tendencies of actual disk forgings. Cracking along grain boundaries

was generally observed to be operative. For the alloys examined in this study, the

solution temperature not alloy chemistry was found to be the primary factor controlling

quench cracking. Alloys with high solvus temperatures show greater tendency for quench
cracking.

Introduction

The understanding of the physics of any process can be of great importance in the

design and manufacture of a product. Nickel-base superalloys, strengthened by gamma

prime precipitates, are often heat treated during the manufacturing process to control

mechanical properties of the alloy. As part of the overall heat treatment process the alloy

is generally quenched from elevated temperatures to increase strength. However, the

thermal stresses that build up in the part during the quenching process will sometimes

exceed the alloy's ultimate strength. When this occurs, cracks will form, releasing the
stresses built up in the alloy but also destroying the part.

This problem is especially troublesome for modem nickel-base superalloys used

in aircraft turbine disks, as the size of these forged parts can be quite large. In addition,

increasing turbine disk temperatures have resulted in the use of coarser grain size to
increase creep resistance, which also, unfortunately, tends to increase the likelihood of
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quench cracking during supersolvus heat treatmem of the disk (Ref. 1). The term

supersolvus refers to temperatures at which all gamma prime precipitates in this class of

alloy are completely dissolved thereby allowing rapid grain coarsening and subsequent

precipitation of fine gamma prime particles upon quenching. To minimize the formation

of quench cracks, one must understand the factors that can influence crack formation

under these conditions. In this experiment two key variables were examined. First, there

is the solution temperature of the superalloy. That is the temperature at which the alloy is

heat treated to coarsen grain size, and this can vary from alloy to alloy based on

chemistry. Secondly the chemical composition of each alloy was looked at, as it affects

mechanical properties such as high temperature ductility that can influence the cracking
propensity of the alloy upon quenching. Studying the effect that these two variables have

on the cracking propensity of a superalloy will aid in the understanding of the quench

cracking process, which could allow for the design of an improved quenching process or
a more crack resistant superalloy.

Materials and Procedures

A large number of small disk shaped specimens (0.9-in. diameter by 0.25-in.

thick), of three next generation nickel-base disk alloys, were machined from forgings by

EDM blanking followed by low stress grinding. While the shape of the specimen was
similar to disk forgings used in aircraft engines, their size was much smaller to facilitate

numerous quenching trials required in this study. The three superalloys used in this

experiment were ME3 (Ref. 2), NF3, and Alloy 10 (Ref. 3). They were chosen for this

study, as ME3 is known to be more resistam to quench crack formation than NF3 or

Alloy 10 during supersolvus heat treatment of large forgings.

As previously stated, the quench cracking problem is most severe for the coarser

grain size produced by a supersolvus heat treatment. For this reason all specimens were

given a pre-solution heat treatment at their respective supersolvus temperature and air-

cooled. This was done to produce a uniformly coarse grain size, between ASTM 6 and 7,

for all alloys before running the quench experiments. The supersolvus heat treatment

temperatures chosen for the three alloys were: 2140 °F for ME3 and 2185 °F for NF3

and Alloy 10. Each alloy was pre-solutioned at its respective supersolvus heat treatmem

temperature for one hour. None of the specimens cracked as a result of the air-cooling
following the pre-solution treatment.

With alloy grain size set via the pre-solution heat treatment, the effects of solution

temperature and alloy composition on quench cracking could now be independemly

studied at a constant grain size. Specimens were re-heated at various temperatures

ranging from 2080 °F to 2200 °F for 15 minutes before quenching in oil. This range of

temperatures spans the range of practical solution temperatures for this class of alloys.

Individual specimens were placed in the furnace on a sheet of superalloy. This was done

so each specimen could be removed from the furnace by grabbing the superalloy sheet

and not the specimen thereby eliminating any unwanted cooling effects introduced by
direct manipulation of the specimen.

After each specimen had received the solution heat treatment it was removed from

the furnace and quenched in vacuum pump oil. Several quenching fluids were tried

including water, oil, and antifreeze/water mixtures before settling on vacuum pump oil.

Vacuum pump oil provided the rapid quenching rates required and also allowed
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maximumvisibility of the specimen during the quench process. The oil Was placed in a

one-gallon can with a mesh platform in the bottom to suspend the specimen in the oil and

thereby minimize cooling differences between the top and bottom of the specimen. The

transfer time from furnace to quench media is very important in this experiment because

the specimens are so small and loose heat very rapidly. A five second transfer time was

as fast as the specimens could be quenched while still being consistent throughout the

experiment. When the specimen had cooled it was visually checked for any quench
cracks that might have formed.

Results and Discussion

Before presenting the experimental quench cracking results a short discussion of

thermal stresses is warranted. Modeling of the specimen during the quench was done

using a 2D axi-symmetric finite element model. Several assumptions were made which

limited the accuracy of the analysis; nevertheless the analysis does allow one to

approximate the temperature gradients along with the stress distribution in the specimen
during the quench. The first and most significant approximation was the estimated heat

transfer coefficient. Based on observation of glow time in oil, i.e., the time required for
the specimen to stop glowing after immersion in oil, a heat transfer coefficient of

1.1Btu/hr-F-in 2 was utilized in the analysis. This number was arrived at by iteration until

the predicted glow time (time for the top center location in the model to reach 1200 °F)

matched the experimental glow time of 12 seconds. Other assumptions employed in the

model included the following: the specimen temperature was 2140 °F when it entered the

oil, all stresses were totally elastic, and the use of constant values for heat capacity and

thermal conductivity, 0.2Btu/lb-F and 1Btu/hr-F-in, respectively. Cooling curves

generated from the model for three key locations in the specimens are plotted in Figure 1.
One should note that the cooling rates approach 100 °F/second on the skin and there is a

significant thermal gradient between the interior and the surface of this specimen despite

its relatively small size as seen in Figure 2. This temperature gradient produces the

thermal stresses that cause quench cracking. The hoop or tangential stress distribution in

the specimen is presented in Figure 3 after five seconds into the quench. The maximum

thermal gradient and therefore the maximum thermal stresses are generated at this time. It

should be noted that the surface of the specimen is in tension while the interior is in

compression at this time. Continued cooling lowers the thermal gradient and therefore the

thermal stresses. While this analysis shows the stresses are significant, the actual

magnitude of the stresses is only approximate as a result of the assumptions that were

previously mentioned. As expected, quench cracking initiated at the disk comers where
the largest stresses were predicted.

The results from the quench testing are presented in detail in Appendix 1.

Pertinent data for all alloys is summarized in Figure 4 in bar graph format. Only two

temperatures are shown in the graph, they are 2170 °F and 2200 °F. 2140 °F is not

shown because only one specimen cracked at that temperature, and no specimens cracked

at 2080 °F. From this graph it would appear that there is no difference in cracking

propensity of the superalloys due to chemical composition. At these temperatures all
alloys behaved in a similar manner.

Figure 5 shows the cracking frequency of all alloys as a function of solution

temperature. None of the specimens cracked in oil at 2080 °F, one out of 26 specimens
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cracked at 2140°F, and at 2170°F and 2200°F about 50 percent of the specimens
cracked. This leadsoneto concludethat solution temperatureis more importantthan
alloy chemistrywith respectto quenchcrackingfor the rangeof compositionsstudiedin
thispaper.

The crackingobservedin the quenchspecimenswassimilar to what is found in
large commercialdisk forgings. The quenchcracking of the test specimenswas all
intergranular,andthis is exactly what is seen in commercial forgings. The quench cracks

were also near the surface at the outer edge, which is where the highest tensile stresses

are located. Shown in Figure 6 is the comparison of intergranular cracking in Alloy 10,
between a full-scale forging and one of the test specimens.

It should be noted that quenching even from the highest temperature did not cause

cracks in all of the specimens. Furthermore, many samples survived multiple quenches

before cracking. This implies that the formation of quench cracks is a complex and

perhaps stochastic process controlled by many variables. In order to study the evolution

of cracking, quenched disks that did not show any cracking were sectioned and examined

by metallography. Microscopic damage, in the form of small subsurface intergranular

cracks, was observed in many of the visually un-cracked samples. The extent of damage

also seemed to increase with temperature. Shown in Figure 7a and 7b is Alloy 10

specimens after quenching from 2140 °F and 2170 °F. One can see evidence of micro

cracking at grain boundaries at 2170 °F, which is absent at 2140 °F. This microscopic

cracking has also been observed in large forgings as shown in Figure 7c for an ME3
forging.

While chemistry differences between the three alloys were significant, all were

high gamma prime content alloys (50 to 60%), typical of next generation disk alloys.

Furthermore, all the alloys in this study had similar grain size. It appears that solvus

temperature was the most important factor affecting quench crack tolerance, not alloy

chemistry per say. However, alloy chemistry does change solvus temperature and

therefore has an important indirect role on quench crack propensity. ME3 has a lower

solvus temperature than Alloy 10 or NF3 and is therefore less likely to quench crack

when it is given a "commercial" supersolvus solution treatment followed by an
aggressive quench, Figure 8.

Summary and Conclusions

Quenching experiments on three next generation turbine disk alloys, ME3, NF3,

and Alloy 10, were run on miniature disk specimens. Although there are significant

differences in the cooling history between these specimens and larger, commercial

forgings, these tests were successful in generating quench cracks similar to what is seen

in the large forgings.

The design of this study allowed a clear separation of chemistry effects and
solution temperature for coarse grain microstructures, ASTM 6 to 7. Based on the results

of this study, it appeared that solution temperature, not alloy chemistry, was the primary

factor controlling quench cracking of these alloys. This data suggests that alloy designers

can increase alloying content to approach the strength levels of Alloy 10 or NF3 without

increasing the risk of quench cracking by maintaining a lower solvus temperature similar
to that of ME3.
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APPENDIX 1 -QUENCH CRACK DATA
ALLOY 10

10A-1

10A-2 2080

10A-3 2080

10A-4 2080
-,

10A-6

10A-7

10B-1

10B-7

10D-1

10D-2

10D-3

10D-4

10D-5
_

TEMP(F)
2080

2080

2080

2080

2140

2140

2140

2140

2140

2170

10D-6 2170

10D-7 2170

10E-1

10E-2

10E-3

10E-4

10E-5

10E-6

10E-7

10A-5

10B-2

10B-3

10B-4
10B-5

10B-6

2170

2170

2170

2170

2170

2170

2170

2200

2200

2200

2200

2200

2200

CRACK

N

N

N

N

N

N

N

N

N

N

N

N

N

Y

N

N

Y

N

N

Y

Y

N

Y

Y

N

Y

ME3 TEMP(F) CRACK NF3 TEMP(F)
3D-1 2080 N 82A-1 2080

30-2 2080 N 82A-2 2080

3K-1 2140 N 82A-3

3K-2 2140 N 82A-4

3K-3 2140 N 820-1

3K-4 2140 N 820-2

3K-5 2140 N 820-3
39-3 2140 N 820-4

3D-4 2140 N 820-5
31-1 2140 N

31-2 2140 N 82E-1 2170

31-3 2140 N 82E-2 2170

31-4 2140 N 82E-3 2170

31-5 2140 Y 82E-4 2170

82E-5 2170

CRACK

N

N

3M-1 2170 Y

3M-2 2170 Y

3M-3 2170 N

3M-4 2170 Y

3M-5 2170 N

3D-5 2200 N

3F-1 2200 Y

3F-2 2200 Y

3F-3 2200 N

3F-4 2200 N

3F-5 2200 N

82A-5 2200

82C-1 2200

82C-2 2200

82C-3 2200

82C-4 2200

82C-5 2200

2140 N

2140 N

2140 N

2140 N

2140 N

2140 N

2140 N

Y

N

N

Y

N

Y

Y

Y

N

N

Y
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